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This paper presents an extended gauge theory which can contain the Higgs 
mechanism, considering kd~ 4 field theory as an example. It can introduce 
interaction into different vacuum modular degeneracy states and break modular 
degeneracy. At the same time we can obtain both massless and massive vector 
bosons. According to the extended gauge theory, gauge transformations can be 
classified into two kinds: those with fixed parameter, called simply definite gauge 
transformations, which have a function of breaking modular degeneracy, and 
indefinite gauge transformations, which have a function of keeping phase 
degeneracy. 

1. I N T R O D U C T I O N  

Since Yang-Mills gauge theory was introduced (Yang and Mills, 1954), 
unified theories of interactions have achieved brilliant success. Electroweak 
theory (Weinberg, 1967; Salam, 1968), grand unified theories, supersymmetry, 
and the gauge theory of  gravitation were built one after another and were 
developed rapidly (Pad and Salam, 1973; Utiyama, 1956; Sohnius, 1985). 
BRS transformations in the quantization of the gauge theory of  gravitation 
are also a further development of gauge theory ideas (Becchi et al., 1975). 
Physicists are realizing more and more the significance of gauge theory. 

However, gauge fields are massless; we have to depend on the Higgs 
mechanism in order to obtain massive gauge particles. If  we extend the 
concepts of gauge transformations, it is easy to include the Higgs mechanism 
in gauge theories. There are two merits of this method: One is that the 
processes of producing mass become very concise. Gauge particles obtain 
mass directly from the extended gauge transformations; it is no longer neces- 
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sary to seek help from the Higgs mechanism. The other is that conditions 
under which the gauge field produced is massive or massless are very clear. 
Here we give a distinct physical rationale in place of the extremely complex 
and even mysterious Higgs mechanism. 

2. DEGENERACY, SYMMETRY, AND BREAKING 

It is known that if the Lagrangian function of a system is invariant under 
a group of transformations, we say that the system has the symmetry of the 
group. For example, the electromagnetic interaction has the symmetry of the 
group U(I). In physics, a certain kind of symmetry corresponds to degeneracy 
of the system. Under the symmetry operation, different states with the same 
Lagrangian function are degenerate. In the gauge theory of the group U(I), 
the Lagrangian function is invariant under local phase transformation. The 
symmetry of a system shows a certain remaining degeneracy of the system. 

Moreover, gauge transformations have another important task, that is, 
introducing interaction. The function of gauge transformations is to break 
some original degeneracy. In essence, therefore, generally, gauge transforma- 
tions have two functions: breaking degeneracy and keeping degeneracy. The 
task of physics is not only to study the symmetry of interactions, but also to 
break the symmetry, and thereby to find new interactions. 

In order to make the above discussion specific, we consider the follow- 
ing system: 

~ = ( a ~ + ) * ( 0 . + )  + ~ 2 + ' 4 ,  - x ( + * + )  2 (1 )  

where the potential due to the qb term is 

U(d~) = h(dp*dp) 2 - 1~2d~*d~ (2) 

Setting U(d~) = O, we obtain two field modular solutions for +: 

I+11 = I ct l  = 0  (3)  

Iqb21 = IC21 = ~ (4) 

This shows that the vacuum zero potential has a degeneracy correspond- 
ing to the above two modular values of dp. 

At the zero potential point, ~1 can be expressed as 

..Y~' = (0~4, )*(0~.+)  - U(cO (5)  

o r  

, ~ '  = (Or - U(c2) (6) 
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Since U(ct) = U(c2) = 0, the degeneracy of the vacuum zero potential 
implies that ~ t  is degenerate under the translation operation of ~b according 
to dp ~ qb + ci (i = 1, 2). Generally, ~ l  is n-fold degenerate under the 
translation operation of ~b according to ~b ---> ~b + ci (i = 1, 2 . . . . .  n) for 
U(c3 = O. 

Now we define transformations for the degenerate states (5) and (6) as 
follows: Consider a field near the vacuum zero potential point, 

1 
d? = ~ ('q(x) + I ci I )e ia(x) (7a) 

4 :  

Make the transformation 

1 
dp --> r = e-ic'dp = ~ ('q + I cil ) (7b) 

O~ --> D~ = O~ - iA~ (7c) 

The purpose of the transformation is to introduce the interaction. We 
call the transformations (7b) and (7c) definite gauge transformations, where 
ci and or(x) are definite. 

2.1. T h e  D e g e n e r a t e  S ta te  for  ]cl[  = 0 

We obtain a Lagrangian density after introducing new interactions 

1 1 
~ 2  = ( 0 ,  + i A ~ . ) - ~  "q(O,. - iAv.)-" ~ 

1 
- -~ (Or.A,, - OvAv.) 2 

1 [.L2,112 __ 1 + • 

(8) 

Obviously, ~2 4: ~1, and modular degeneracy is broken. We obtain a 
massless vector boson A~ simultaneously. The degeneracy corresponding to 
phase is kept. Hence, ~2 is invariant under the following transformations: 

d# ~ dp' = e-if~tx)dp (9a) 

D~d? ~ D'db' = e-if~(~)Dvd? (9b) 

Ag --~ A~ = A~ - 0~[3 (9c) 

We call the transformations (9) indefinite gauge transformations. 
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2.2. The Degenerate State for ICll = t t /~ /~  

We obtain a Lagrangian density after introducing new interactions 

23 = (a)~ + iA),)--~ "q + (0)~ - iA),)--~ "q + 

,( ,( ,)4, 
+ ~ ~2 ~ + _ ~  _ ~ x n + --~ - ~ (o~a, - o~a~) 2 (10) 

Here the term �89 represents a vector boson of mass ~/q/-h. In 
addition, the scalar field ~(x) has mass ,,/~lx. The result is not different from 
that of the Higgs mechanism. It should be pointed out that the Higgs mecha- 
nism only breaks modular degeneracy and does not break phase degeneracy. 

We see that it is worth replacing the Higgs mechanism by definite gauge 
transformations because, first, the Higgs mechanism cannot obtain massless 
vector bosons, otherwise definite gauge transformations could obtain both 
massive and massless vector bosons, and second, definite gauge transforma- 
tions simplify greatly the complicated process of the Higgs mechanism, and 
the physics becomes clear. 

3. EXTENDED GAUGE TRANSFORMATION THEORY 

We show the role of degeneracy breaking by gauge transformations and 
its relation to the Higgs mechanism as follows: 

Gauge Gauge 
transformations transformations 

2~' > 22 > 22 Degeneracy of zero 
potential 

Gauge '~1 ) Higgs mechanism transformations 

2 ~  > 23 > 23 
(modular degeneracy is broken) (phase degeneracy is kept) 

This shows that gauge transformations have two functions: breaking modular 
degeneracy of 2~ and keeping phase degeneracy of 2 t .  Furthermore, we see 
that the original gauge transformations break the degeneracy of 2~t, and, as 
a result, yield massless vector bosons; on the other hand, the Higgs mechanism 
breaks the degeneracy of 272 and yields massive vector bosons. 

We call the degeneracy-breaking gauge transformations "definite gauge 
transformations"; the transformation parameter I cil is the modular solution 
for U(d:) = 0. 

Appropriately, we call gauge transformations that keep degeneracy 
"indefinite gauge transformations." In this way, the extended gauge transfor- 
mations are essentially 
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Extended gauge transformations 

Definite gauge transformations 
(remove mode degeneracy) 

Indefinite gauge transformations 
(retain phase degeneracy) 

According to this point of view of gauge transformations, the Higgs 
mechanism actually corresponds to definite gauge transformations whose 
parameter is I C 2 I. 

On the basis of the above framework, we include the Higgs mechanism 
in gauge transformation theories. At the same time the procedure becomes 
very simple. 

The concepts of the extended gauge theory are perfectly suitable for 
Yang-Mills theory. 
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